

 - 1 -

Introduction and Outline

The research proposed is to develop methodologies and tools for designing and implementing very large-
scale real-time embedded computer systems that

• achieve ultra high computational performance through use of parallel hardware architectures;
• achieve and maintain functional integrity via distributed, hierarchical monitoring and control;
• are required to be highly available; and
• are dynamically reconfigurable, maintainable, and evolvable.

The specific application that will drive this research and provide a test platform for it is the trigger and data ac-
quisition system for BTeV1, an accelerator-based High Energy Physics (HEP) experiment to study matter-antimatter
asymmetries (also known as Charge-Parity violation) in the decays of particles containing the bottom quark. BTeV
was recently approved by Fermilab2 and will be constructed over the next 5-6 years to run in conjunction with the
Fermilab Tevatron Collider. The experiment is expected to run for at least 5 years. It requires a massively parallel,
heterogeneous cluster of computing elements to reconstruct 15 million particle interactions (events) per second and
uses the reconstructions to decide which events to retain for further data analysis. Creating usable software for
this type of real-time embedded system will require research into solutions of general problems in the fields of
computer science and engineering. We plan to approach these problems in a way that is general, and to pro-
duce methodologies and tools that can be applied to many scientific and commercial problems. During this
project, the research results will be carried into the high-school system through projects which enhance existing in-
frastructure for attracting students into science and engineering disciplines.

 The classes of systems targeted by this research include those embedded in environments, like BTeV, that pro-
duce very large streams of data which must be processed in real-time using data dependent computation strategies.
Such systems are inextricably tied to the environment in which they must operate, and must perform complex com-
putations within the timing constraints mandated by their environments. These systems require ultra high per-
formance (on the order of 1012 operations per second). The level of performance requires parallel hardware ar-
chitectures, which in the case of BTeV is composed of a mix of thousands of commodity processors, special pur-
pose processors such as Digital Signal Processors (DSPs), and specialized hardware such as Field Programmable
Gate Arrays (FPGAs), all connected by very high-speed networks. The systems must be dynamically reconfigur-
able, to allow a maximum amount of performance to be delivered from the available and potentially changing re-
sources. The systems must be highly available, since the environments produce the data streams continuously over
a long period of time, and interesting phenomena important to the analysis being done are rare and could occur in
the data at any time. To achieve the high availability, the systems must be fault tolerant, self-aware, and fault
adaptive, since any malfunction of processing elements, the interconnection switches, or the front-end sensors
(which provide the input stream) can result in unrecoverable loss of data. Faults must be corrected in the shortest
possible time, and corrected semi-autonomously (i.e. with as little human intervention as possible). Hence distrib-
uted and hierarchical monitoring and control are vital.

We believe that there are very significant advantages to connecting this research to the BTeV experiment. Not
only will the software and methods produced by this research have significant impact on one of the most important
areas of investigation in HEP, but the generalizable computer engineering research will also be directly applicable to
a large class of similar real-time embedded computer systems. The BTeV trigger system hardware, which will be
provided by Fermilab as part of the experiment, will supply an extremely important ingredient in this project: a large
test-bed that represents millions of dollars of equipment and comes with a highly motivated set of users who will test
the methodologies and tools developed in an extremely harsh environment over an extended period of time. The
test-bed will be built gradually as the proposed research progresses, from a 5% system in 2002 to a full system in
2005-2006. It will therefore be possible for the software developers, aided and supported by the experimenters, to
test and refine the software and strategies continuously and incrementally throughout the lifetime of this project.
The close interdisciplinary contact between the experimenters and computer scientists will also help introduce im-
portant computer science research into the HEP community, which has not always been aware of work that has been
done in this area and has not taken full advantage of it.

The team that has been assembled to carry out this research consists of the leaders of the BTeV trigger and data
acquisition system development efforts and Computer Scientists who are experts in the field of embedded systems,
real-time systems, and fault tolerant computing3. The Computer Scientists come from universities that are strongly
involved in BTeV, and from Fermilab. The team is committed to carrying out the proposed R&D and implementing
a series of systems of increasing size and complexity, using the experience gained at each stage to refine and im-
prove the system until it is demonstrated to scale to the full BTeV system.

 - 2 -

The outline of the proposal is as follows: Section 1 gives a brief description of the BTeV data acquisition and
trigger system and explains issues relating to scalability, flexibility, dynamic reconfigurability, partitionabilty, and
fault-tolerance. Section 2 describes the software required for systems of such complexity and our approach toward
developing it. Section 3 reviews existing work in this area and discusses how the proposed research will adopt and
extend it. Section 4 discusses those features that will make the research applicable to a wide range of scientific and
information technology problems, along with examples of additional applications. Section 5 describes the educa-
tional outreach activities of the project. Section 6 describes the collaboration, its organization, and its personnel and
lists project deliverables and milestones. Section 7 contains concluding remarks.

1. The BTeV Trigger System
This section has two parts. The first part describes the BTeV triggering and data acquisition system, in order to

explain the problem that must be solved and the basic architecture and scale of the system that is planned to address
it. The �trigger� or �event filter� algorithms that run on the resulting hardware platform are briefly described. These
algorithms, which will largely be written by physicists from the BTeV experiment, are not, however, the thrust of
the research proposed here. The second part of this section addresses the requirements of the infrastructure required
to keep the trigger system operating, to assure that it is working correctly, and to detect and adapt to fault conditions
both within the computing platform and within the experiment and machine environment. This has been called out4
as the major challenge in implementing the BTeV trigger:

�Regarding the robustness and integrity of the hardware and software design of the trigger system, these is-
sues and concerns have only begun to be addressed at a conceptual level by BTeV proponents � Given the
very complex nature of this system where thousands of events are simultaneously and asynchronously
cooking, issues of data integrity, robustness, and monitoring are critically important and have the capacity
to cripple a design if not dealt with at the outset. It is simply a fact of life that processors and processes die
and get corrupted, sometimes in subtle ways. BTeV has allocated some resources for control and monitor-
ing, but our assessment is that the current allocation of resources will be insufficient to supply the neces-
sary level of "self-awareness" in the trigger system� Without an increased pool of design skills and ex-
perience to draw from and thermalize with, the project will remain at risk. The exciting challenge of de-
signing and building a real life pixel-based trigger system certainly has the potential to attract additional
strong groups.�

The main thrust of the R&D proposed here is to address this key concern, which is a generic concern for
highly-reliable embedded real-time systems of this scale and complexity

1.1 The BTeV Trigger System Hardware and Filtering Algorithms
BTeV is a High Energy Physics (HEP) project that will carry out an ambitious experiment to search for and

study differences between the decay of particles containing b-quarks and the corresponding decays of anti-particles
containing b-antiquarks. The study of this asymmetry will shed light on the preponderance of matter over antimatter
in the observable universe and is one of the intense areas of research in elementary particle physics5. BTeV will util-
ize the Fermilab Tevatron Collider for this research. The Tevatron will produce 15 million high-energy particle col-
lisions (also referred to as interactions) per second at the center of the BTeV detector. Each one of these interactions
typically creates between 10 to 100 subatomic particles that will travel through the detector, where they will be
tracked and identified. The interactions that are likely to exhibit b-quark asymmetries are expected to occur once for
every 1 million collisions in the BTeV detector. This means that for each year of operation BTeV must �filter� data
from over one hundred trillion interactions to select a sample of 10 billion b-quark decays from which a few million
will be used to reveal the mysteries of matter-antimatter asymmetries.

BTeV will generate an enormous amount of data, about 1.5 terabytes per second. The factors that contribute to
this exceptionally large data rate are the interaction rate (15 million collisions/s), the large number of particles that
are produced in the collisions, and the large number of electronic sensor channels (30 million channels in the current
design) in the detector. Because recording all of the data on an archival medium for later analysis is simply impossi-
ble, the challenge for the BTeV trigger system is to analyze data from the detector in real-time and to select interest-
ing b-quark interactions to write to permanent storage for subsequent offline analysis.

Electronic trigger systems are common in HEP experiments6. However, BTeV is pursuing an ambitious trigger
strategy that is unique in HEP. Most other experiments use a simple �first level� trigger, based on dedicated hard-
ware which makes relatively unsophisticated decisions based on the most obvious, but not necessarily the most fun-
damental, differences between the signal and the background events. Typically, these triggers accept only very spe-
cific event topologies that conform to the idea of what is important physics at that moment. This reduces the number

of interactions that must be processed by subsequent trigger levels, but the simple first-level trigger limits physics
analyses by rejecting potentially interesting data. For BTeV a conventional first-level trigger of this type would re-
strict the experiment to a limited selection of b-quark particle decays, and would thereby prevent us from pursuing
the broad range of physics analyses, including some that are �off the beaten path�, that we feel are needed to study
b-quark asymmetries. Consequently, the BTeV trigger must be considerably more complex than triggers used for
other experiments. The design of the trigger is driven primarily by the physics goals of the experiment.

The BTeV strategy is to trigger on the most fundamental property that differentiates particles containing the b-
quark from other types of particles. That property is the presence of an interaction vertex, where the B particle, the
anti-B particle, and many other particles are produced, followed by vertices a few hundred microns away where the
B particles decay. Detecting such small vertex separations requires the reconstruction of all vertices using a complex
pattern recognition algorithm. The BTeV �vertex trigger� performs pattern recognition for every interaction in the
detector (15 million /s)7. A WEB-based animation of the pattern recognition with explanatory text is available8.

An overview of the architecture of the BTeV trigger and data acquisition system is shown in Figure 1, and some
significant numbers that characterize the system are given in Table 1.

Table 1: Sizing characteristics of the system scale

of Gbyte/s
data links

Buffer
memory

Data rate to
L1 buffers

Data rate to
L2/L3 buffers

Data rate to
archive

of L1
DSPs

of L2/L3
Processors

2500 1 Tbyte 1.5 Tbytes/s 25 Gbytes/s 200 Mbytes/s > 2500 2500

The trigger system has three distinct levels, called Level 1(L1), Level 2(L2), and Level 3(L3) and will use mas-

sively parallel computation
pipelines at each level. L1
includes the vertex trigger, and
additional triggers are being
considered. Figure 1 shows the
buffers that receive data from the
BTeV detector, an expanded view
of the first-level vertex trigger, a
Global Level 1 trigger manager
that will process the results from
all first-level triggers, a switch
that will route data to a large
computing farm called the Level
2/3(L2/3) cluster, and the buffers
and processors that make up the
L2/3 trigger. There is no dis-
tinction between L2 and L3
hardware, since the same proc-
essors will be used to execute
the L2 and L3 algorithms. A proce
rithm. If the data satisfy the L2 sel
L2 or L3 selection requirements wi
be written to archival storage at an

Detailed Monte Carlo simulati
formed to estimate the capabilities
relevant results. As mentioned bef
will be 1.5 Terabytes per second. A
ered long enough to give the L1 tri
subset of the data (the data from th
in Figure 1). The L1 vertex trigger
Gate Arrays (FPGAs) to find track
were created in an interaction). The
essors (DSPs) that reconstruct par
Benchmarks of the reconstruction
Figure 1: Schematic of the BTeV Trigger and Data Acquisition System
showing (left side) the detector, buffer memories, L1, L2, and L3 clusters
and their interconnects and (right side) a blowup of the L1 Vertex trigger
- 3 -

ssor that receives data for an interaction will process the data using the L2 algo-
ection requirements, the data are processed using the L3 algorithm. Data that fail
ll be dropped. Data for an interaction that satisfies the selection requirements will
average rate of 200 Mbytes/s.
ons, data-flow simulations, and benchmarks for trigger algorithms have been per-
 required of the BTeV trigger and data acquisition project. Here we describe the
ore, the data rate out of the BTeV detector and into the data acquisition system

ll of the data for each interaction that occurs in the BTeV detector will be buff-
gger time to decide if the data should be dropped or sent to an L2/3 processor. A
e silicon pixel vertex detector) will be sent to the L1 vertex trigger (inset shown
implements a pattern recognition algorithm using about 500 Field Programmable
 segments in the pixel vertex detector (the first step in finding the particles that
 track segments will be routed through a switch to a farm of Digital Signal Proc-
ticle trajectories, followed by a second farm of DSPs that reconstruct vertices.
algorithms were performed for the Texas Instruments TMS320C67X DSP. The

 - 4 -

results from these benchmarks and estimates of the input data rate indicate that the L1 vertex trigger will require
about 2500 DSPs to achieve the necessary processing power. This estimate does not include additional processors
for fault tolerance or for other L1 algorithms, nor does it include the large number of support processors required to
configure, monitor, and control the DSPs. The design goal for L1 is to reject 99% of the interactions that occur in
the detector. The interactions that survive L1 will be passed to the L2/3 trigger. L2 will perform a more refined
analysis of the data and impose more stringent selection criteria than L1. L3 will improve the analysis for each inter-
action that survives L2 even further by considering data from each detector subsystem and by performing a detailed
physics-based analysis to identify interesting interactions. We have estimated that the L2/3 trigger cluster will re-
quire on the order of 2500 general-purpose computers, such as Intel Pentiums running the LINUX operating system.
The L2/3 system will provide another factor of 20 in rejecting uninteresting events for a total rejection of 2000.

The requirements for the BTeV trigger are well understood, and the design is at an advanced conceptual stage.
However, there is still enough flexibility in the design to adapt to new discoveries and different implementation
strategies. For example, calculations that are currently done in DSPs may be migrated into FPGAs or we may use
more DSPs and fewer PCs , or vice versa. The supporting software infrastructure must be flexible enough to handle
variations in the hardware design. There will be variations due to the availability of new and different types of
hardware, the addition of redundant hardware for reliability, elimination of superfluous hardware, or algorithm
changes that require different hardware implementations. We must retain the ability to make design changes that
permit the most cost effective use of the computing hardware. The results from the proposed research will pro-
vide critical feedback to the designers of the BTeV system to achieve the required robustness and agility.

1.2 IT Aspects of the BTeV Trigger and Data Acquisition System
While the hardware platform required to achieve the above-stated goals is extensive and complex and the trig-

ger algorithms are quite challenging, an even greater challenge is to keep the system functioning and producing
quality results over a period of several years. The system must serve well during the detector commissioning and
debugging stage, during routine operations, troubleshooting, and calibration. Even during normal operations, it must
operate in several modes and switch between these modes dynamically. It must continue to operate in spite of the
failure of some of its components. It must adapt itself to varying conditions in the Tevatron accelerator and in the
BTeV detector. It must evolve as hardware is replaced or as more powerful components are introduced to extend its
capabilities, and it must accommodate changes in software as more is learned about the physics and as the detector
itself evolves. In addition to computational performance, the key requirements for the BTeV trigger system include:
(1) Dynamic reconfiguration and partitioning; (2) High availability, including introspective, self diagnosing, fault
tolerant, fault adaptive capabilities; and (3) Life-cycle maintainability and evolvability.

1.2.1 Dynamic Reconfiguration and Partitioning
The system must be able to handle two aspects of dynamic reconfiguration: the ability to dynamically adjust pa-

rameters of the experiment, and the ability to reconfigure and repartition hardware used to analyze and filter data
from the experiment. The latter will require some degree of dynamic reconfiguration of the computation network,
so that the system can vary both the interconnectivity between different trigger levels and the number of processors
assigned to different tasks.

In order to execute a number of different tasks (some of them simultaneously) the system must be able to oper-
ate in different modes. Examples are: 1) standard trigger operation; 2) special modes to support commissioning, de-
bugging, and calibration of the detector; 3) verification of repairs, upgrades, and replacement of hardware and soft-
ware components; 4) in situ (re)calibrations as the experiment proceeds; 5) use of parts of the system to test new
trigger algorithms; 6) verification of detector alignment and calibration at the start of each physics run, which can
occur a few times per day; and 7) introduction of special diagnostic packages to investigate problems in the detector,
the trigger hardware, or software.

 There is another significant area where dynamic reconfiguration is highly desirable. Physicists will use offline
computing resources, requiring extensive processing power and I/O capabilities, for data analysis. One possible plat-
form will be the L2/3 trigger system. The L2/3 trigger is not always fully saturated by real-time data acquisition,
since the Tevatron intensity decreases during a run cycle9. Therefore, the L2/3 processors should be available to
physicists when they are not needed for trigger tasks. Research on cluster-based services for the Internet10 has ex-
plored the use of overflow pools or sets of computers that can be used temporarily to handle prolonged bursts in de-
mand for a service. We will explore a system that relinquishes resources during periods of low demand.

 - 5 -

1.2.2 High Availability
The BTeV system must be available 24 hours/day, 7 days/week (24/7) to support all of the previously men-

tioned tasks. The highest possible data throughput and data quality must be maintained during normal trigger opera-
tions. Therefore, the system must be fault tolerant, introspective, self-diagnosing, and fault adaptive.

There are many ways that a complex heterogeneous system can malfunction, including the failure of individual
processing elements or network switching elements. Moreover, a noisy accelerator environment or detector mal-
functions could produce faulty data that impair the ability of the system to maintain data throughput or data quality.
BTeV must be fault tolerant, but at an acceptable expense. For example, airline systems use two or three levels of
redundancy in critical computer systems. This level of redundancy is costly, but the cost is warranted. In the case of
the BTeV trigger, while it is unacceptable that the system loses large amounts of data, it is tolerable to lose a small
fraction of the data for a short period of time. The key feature is that during fault conditions, the trigger system must
continue to operate, possibly at decreased capacity (graceful degradation).

The system must be able to detect fault conditions, both locally and globally, and operator intervention should
be kept to a minimum. Due to the system�s complexity, it could take a very long time for an operator to recognize
the existence of a problem, diagnose it, and remedy or mitigate it. All the while, valuable data from the experiment
would be lost, or be of poor quality. The system must take the initiative to mitigate and adapt to faults.

One basic operation when adapting to faults is to remove the failed component from its partition, and restart its
computation on a similar component. An example of this is a classic offline and batch processing system that relies
on check-pointing. We will evaluate at which levels check-pointing is appropriate for high performance embedded
systems, where loss of data, rather than compute time, may occur.

The proposed BTeV system has the capability to change many key operating parameters to repair or mitigate
problems detected by its analysis programs, not only within the trigger and data acquisition system but also in the
detector complex. For example, it can reduce the high voltage supplied to a noisy detector, or raise the threshold for
deciding that it has valid information. Furthermore, there are typically several physics triggers and several calibra-
tion and monitoring triggers, which are "pre-scaled" to obtain an output data stream. The system can adjust these
pre-scaled triggers or turn off lower priority triggers to preserve resources - computational, memory, or network
bandwidth - for the highest priority data.

1.2.3 Life-cycle Maintainability and Evolvability
BTeV will be constructed over the next 5 years and will then run for at least 5 years after that. It will be essen-

tial to develop a trigger and data acquisition system that can be easily operated and maintained. It must be a system
that can evolve as old hardware fails or becomes unsupported and as new hardware and software technologies that
offer improved performance become available. In addition, the experiment itself will undoubtedly be modified to re-
spond to new ideas and challenges as we learn more physics. The system must be able to adapt to support these
changes. One has only to look back over the experience in HEP in the last decade to understand how difficult it will
be to achieve this goal, and how necessary it is to address it from the earliest design.

2. Project Description, Goals, and Objectives
The BTeV trigger system is an example of a massively parallel, high performance, high reliability, computa-

tional system. The design and implementation of such systems cannot be achieved by the ad hoc approach of devel-
oping simple small-scale components and scaling them up into large-scale systems11. Issues such as fault tolerance
and performance must be explicitly addressed at multiple levels in the system design12. We propose advances in
system design methodology, tools and runtime infrastructure to facilitate these and more issues involved in develop-
ing such systems. We further propose to develop the software to accomplish the design and implementation of the
system and to study its performance, utility, and scalability on the actual BTeV hardware as it grows over the con-
struction phase of the experiment. The result of this research will be software, design methodologies, and the
documented experience of the project.

Several capabilities are required: (1) System Modeling and Analysis � Full-system performance estimations
are needed during development, given the coupling that exists between different aspects of a system design (e.g.
low-level architectural decisions can have a large impact on system-level performance and fault behavior). Design-
ers need mechanisms for representing and evaluating the impact of these decisions. The design tool will serve as a
framework for modeling and analyzing system designs via behavioral simulation, performance simulation, design
verification, etc. The design tool will continue to be useful during operations to understand how to handle unantici-
pated situations, which often arise in HEP research; (2) System Configuration Management � Configuration of a
large-scale networked processing system is a complex problem, more so when the system is susceptible to faults13.

 - 6 -

A robust configuration management infrastructure is required, with the ability to specify reconfiguration strategies at
different levels. The fault mitigation infrastructure is intricately coupled to the configuration management infra-
structure � means to capture the specifics of the coupling are necessary; (3) Runtime Environment and Hierarchi-
cal Fault Detection/Management � The deployment, execution and reconfiguration of the components must be
carefully managed, especially when the cost of downtime is high, as is the case for BTeV. Runtime environment
control is essential. A system-wide infrastructure is required for rapidly detecting, isolating, filtering, and reporting
faults. In very large-scale heterogeneous systems a single centralized fault management solution is clearly not feasi-
ble14. Hierarchical distributed fault mitigation is necessary, with the ability to specify fault mitigation policies at dif-
ferent levels of abstraction (system, network, node, etc.)

The architecture of the framework is shown in figure 2 and is discussed below. There are two principle compo-
nents of the proposed framework: In Section 2.1, we will introduce the Design and Analysis Environment, and in
Section 2.2 we will describe the Runtime Environment. The proposed framework leverages work both in design
automation tools, and in real-time, parallel, and fault tolerant runtime systems to support system design, analysis,
and implementation.

2.1 Design and Analysis Environment
A high-level design tool is required to support the overall design, deployment, and evolution of BTeV-type sys-

tems. The Model Integrated Computing (MIC)15,16 approach, developed at the Institute of Software Integrated Sys-
tems (ISIS), Vanderbilt University, assists the creation of domain-specific modeling, analysis, and program synthe-
sis environments for building complex, large-scale computer-based systems. Integrated models created in this envi-
ronment represent all relevant factors of a physical system. Models can be subjected to many types of rigorous
analysis, for verifying the behavior and performance of the system prior to implementation. Central to this approach
is the concept of a �configuration�, which is a particular organization of computing resources, such as processors,
network components, memory buffers, and storage elements, and a particular allocation of software components and
datasets on them, including task schedules and message routes. Systems can be synthesized (or generated) from the
models when the designer is satisfied with the analysis results. The Design and Analysis Environment will consist
of: a) graphical modeling language/environment for system specification; b) synthesis tools for interfacing the mod-
els with commercially available and custom analysis tools; and c) synthesis tools for generating configurations from
specifications, for configuring fault managers, and for configuring operation managers. The Design and Analysis
Environment is the part of the system shown above the dotted line in Fig. 2.

The synthesized configurations are deployed and executed in the Runtime Environment. The primary interac-
tion between the Design and Runtime environments is through the synthesis process. However, feedback from the
Runtime to the Design environment is possible in advanced fault scenarios that require re-synthesis and re-
deployment. While MIC provides the basic infrastructure, research is required to define: (1) modeling language
and composition methodologies suitable to BTeV�s application; (2) mapping techniques for models to/from
analysis tools; (3) large-scale synthesis techniques.

2.1.1 Modeling
We will develop a multiple-view, domain-specific graphical modeling paradigm to allow physicists to specify

BTeV systems. We will compose this paradigm from best-of-class modeling formalisms, and models of computa-
tion17, the composition yielding a unique integrated formalism. Following are the main modeling views and their
associated formalisms:

Information/Algorithm Data Flow Modeling
The Algorithm Modeling view describes the experiment�s processing algorithm structure. The algorithm is

modeled as a Dataflow Graph with the nodes representing experiment computations and arcs for communica-
tions/data routing. Hierarchical Composition manages complexity, and allows system partitions to be designed in-
dependently, and assembled on an experiment-specific basis. Design Alternatives express implementation options,
which have been previously used in research for system optimization and will be extended to support fault mitiga-
tion strategies. Timing information will be captured (see constraints). Timed Data-flow representations exist for
real-time systems18, however no provision for fault behavior was included. The dataflow graph will be extended
with Data Routing/Distribution Modeling to manage complex, data-dependent routing (necessary for extreme
bandwidth systems), addressing the real-time distribution of information within the system. Explicit Control Flow
modeling will permit specification of control actions for experiment data processing. The Software Failure Propa-
gation view will define expected exceptions, their severity/priority, and their propagation (e.g., Div By Zero, Real-
Time Deadline Miss, Pointer-out-of-range/bus error, User-defined/data dependent exception.) Failure propagation

graphs will be superimposed upon the computational structure to capture the impact of software component failure
on other software or hardware components. Failure propagation graphs have been applied to physical system diag-
nostics19,20. Their application to software failures is a new research approach.

Analysis

Local Oper.
Manager

Local
Fault
Mgr

Trig
Algo.

ARMOR/RTOS

Trig
Algo.
Trig

Algo.
Trig

Algo.

L
ogical C

ontrol N
etw

ork

L1/
DSP

Local Oper.
Manager

Local
Fault
Mgr

Trig
Algo.

ARMOR/RTOS

Trig
Algo.
Trig

Algo.
Trig

Algo.

Lo
gi

ca
l D

at
a

N
et

Local Oper
Manager

Local
Fault
Mgr

Trig
Algo.

ARMOR/Linux

Trig
Algo.
Trig

Algo.
Trig
Algo.

Lo
gi

ca
l D

at
a

N
et

L
ogical C

ontrol N
etw

ork

Local Oper
Manager

Local
Fault
Mgr

Trig
Algo.

ARMOR/Linux

Trig
Algo.
Trig

Algo.
Trig
Algo.

L2,3/
CISC/
RISC

Region Operations Mgr

Region
Fault Mgr

Runtime

Design
and

Analysis
Algorithm Fault Behavior

Resource

Sy
nt

he
si

s

Performance
Simulation

Diagnosability
Analysis

Reliability
Analysis

System
Models

Soft Real-Time Hard

Experiment
Control

Interface

Synthesis

Fe
ed

ba
ck

Modeling

Logical C
ontrol N

etw
ork

Global
Operations

Manager

Global Fault
Manager

Reconfig Behavior

Figure 2: Bi-Level System Design and Runtime Framework � System Models use domain-specific, multi-view
representation formalisms to define system behavior, function, performance, fault interactions, and target
hardware. Analysis tools evaluate predicted performance to guide designers prior to system implementation.
Synthesis tools generate system configurations directly from the models. A fault-detecting, failure-mitigating
runtime environment executes these configurations in a real-time, high performance, distributed, heterogene-
ous target platform, with built-in, model-configured fault mitigation. Local, regional, and global perspectives
are indicated. On-line cooperation between runtime and modeling/synthesis environment permits global sys-
tem reconfiguration in extreme-failure conditions.

 - 7 -

Target Hardware/Resource Modeling
Resource Modeling allows us to define the hardware platform. It is modeled in terms of: Node Architecture,

capturing the attributes of a computational (DSP, CPU, Memory) or routing (FPGA) node; Topology, the connec-
tivity, bandwidth, timing, and messaging protocols; and Routing Infrastructure, the capabilities of data
merge/distribute components. For data-intensive systems, active routing is required, where data distribu-
tion/management is algorithm-specific (i.e. FPGA processing elements in the data path). Capturing this information
explicitly in models will facilitate performance optimization. Hardware Failure Propagation models capture the
anticipated failure modes of the processors and switches, along with their severity and propagation characteristics.
These modeling views combine to form the �Target Hardware Configuration� of the original, non-faulted computer
system. The resource models will be dynamically updated by the Runtime Environment in advanced fault scenarios.
Node architecture and topology is based on prior work; failure propagation is new in this context.

System Detection and Fault Mitigation Modeling
Fault mitigation models capture potential fault scenarios and user-defined fault response strategies as Hierar-

chical Finite State Machines (HFSM)21 to help resolve and mitigate faults. The HFSM states represent responses
of the BTeV system executing management actions, such as: reschedule a process on another processor; reroute data
around a faulty communication device; disable a sensor input; re-synthesize from an existing system, performing

 - 8 -

minor perturbations; or globally re-synthesize an optimized system (i.e. when the fault is not recoverable with a
simple action).

Rescheduling, rerouting, and disabling actions can rapidly (milliseconds) handle minor component failures,
with an anticipated degradation of the system capabilities. Perturbation re-synthesis will locally re-optimize for
failures and attempt to achieve minimal system degradation, executing in tens of seconds. Global re-synthesis will
make best use of all available hardware, aggressively rescheduling/reallocating to maximize functionality in the
event of significant component failure, with longer recovery times (minutes-hours).

System Constraint Modeling
Many requirements for the system design crosscut modeling aspects. These requirements are expressed as

Constraints. Constraints play two important roles: a) they express relations, complex interactions, interdependen-
cies between objects and properties in different aspects, and b) they express non-functional requirements. An ex-
tended variant of the Object Constraint Language (OCL)22, has been developed23 to express the following forms of
constraints: (a) performance constraints, (b) resource constraints, and (c) compositional constraints. The application
of a constraint language to system partitioning and allowable fault-mitigated system configurations is new re-
search.

2.1.2 Analysis
Prior to system synthesis it is important to subject the designed system to a variety of rigorous analyses to help

uncover subtle design flaws. When diagnosed at a late stage these flaws lead to costly redesign. In previous MIC
research, the design framework was interfaced with a variety of analysis tools for diagnosability (DTOOL for the In-
ternational Space Station)24, performance simulation (PML discrete event simulation for Adaptive Computing Sys-
tems Model Integrated Design Environment)25 and state space analysis for safety and reliability (SSAT for Sandia
National Labs, analysis of High Consequence/High Assurance Systems)26. We will extend these efforts to address
the properties and requirements of the BTeV system. In particular we will apply these analysis techniques to timing,
performance, bandwidth requirements, and fault tolerance. The results of the analysis will be fed back into the sys-
tem models27.

2.1.3 Synthesis
Synthesis involves several phases: 1) Resolution of design alternatives, partitioning and processor allocation; 2)

Generation of system configuration source code (communication maps, processor schedules, glue code, programma-
ble hardware designs (VHDL/Verilog), etc.); 3) Compilation/linking to executable modules/hardware bit files. Load-
ing/deployment is done by the Runtime Environment.

Design Alternative Resolution, Partitioning, and Processor Allocation
The system models capture a multi-dimensional design space. From this space, a few configurations must be se-

lected which satisfy the design objectives while not violating any constraints. Design Space Exploration has been
used in the past to select configurations for performance optimization23. In BTeV, the configuration space can be
explored for fault mitigation (i.e. selection of configurations that do not rely on faulted components.) The size of the
design space, and complexity of constraints makes this a challenging research issue.

We will study, adapt, and extend at least three approaches for design alternative resolution, partitioning, and
processor allocation. (1) Ordered Binary Decision Diagrams (OBDDs)28,29 for constraint satisfaction; (2) Multi-
agent-based processor allocation/partitioning30; and (3) Economically rational decision-theoretic model for proces-
sor allocation and scheduling31.

System Configuration Generation
The next phase of system synthesis generates configuration artifacts to be used in creating system executables.

These include compilable design specifications for configurable hardware components (FPGAs); schedules, com-
munication maps, message routing tables for commodity/DSP processors; specifications for operation and fault
managers. These artifacts are compiled to generate system executables. Specifically:
Hardware: For some configurable hardware components within the system, specifically programmable routing ele-
ments (FPGAs), design specifications will be generated. The design will be composed of existing components
(from a standard interface runtime library or hand-developed/commercial IP) using structural VHDL/Verilog and a
set of glue �intrinsics�. Off-the-shelf tools generate �bitfiles�, specifying the electrical structure of all configurable
chips. We will leverage the ACS program results in hardware synthesis32.
Software: For software-programmable (L1 DSP and L2/L3 general-purpose CPU) components, software specifica-
tions are generated, providing information for the Runtime Environment to implement the necessary computational
behavior. Specifications include: real-time schedules and communication maps for information flow. Interfaces be-

 - 9 -

tween software modules and hardware modules/data sources/sinks are automatically inserted, managing the hard-
ware interfaces for complex communication protocols into simpler hardware compatible protocols, multiplexing
physical ports and performing data conversion functions. We will leverage the ACS program results in software syn-
thesis33.
Operation & Fault Manager: The fault detection and mitigation behavior models are used to automatically synthe-
size/configure a hierarchy of operation and fault managers. Hierarchical fault managers are configured with the
specified behavioral descriptions. State tables and next state equations and the interfaces to internal and external
events are generated, for the runtime executables. The fault managers interface with operation managers at each
level in the hierarchy, performing local, regional, or global reconfiguration.
Partial/Online Re-synthesis: In addition to a full-scale optimized system synthesis, the framework will also support
small-scale, rapid perturbations. Small hardware failures trigger limited-scope system re-synthesis. A cost function
associated with system modifications will be assessed to balance the benefit of a modification to data quality vs. the
cost to reprogram system components. On-line partial re-synthesis is a research issue.

2.2 Runtime Environment
2.2.1 Operating System(s)

The runtime environment must support real-time scheduling, message passing, synchronization, and some pre-
liminary fault-tolerance mechanisms for the DSP elements of the Level 1 trigger. The L2/3 computers must have
support for �soft� real-time response, since although they are part of the data path, there will be less strict timing
constraints at these levels, and more flexibility in the scheduling of tasks. To best use existing work, we propose to
extend available OSs to meet the needs of the BTeV system. The extensions will be done above the OS whenever
possible, but kernel modifications will be employed when dictated by the latency requirements of the system.

There are several real-time operating systems (RTOSs) that we can consider for DSPs: Texas Instruments�
DSP/BIOS34; ENEA OSE real-time kernel35; and some non-commercial university kernels36. We will investigate
which of these can be used in BTeV at different levels. A primary requirement is that the chosen RTOS be able to
accommodate the application and constraints of BTeV. We intend to use our expertise to extend the chosen RTOS
with fault tolerance, reconfiguration, and partitioning capabilities. As shown in Figure 2, the DSPs at the Level 1
trigger will use DSP-friendly embedded hard RTOSs. The trigger Levels 2/3 do not have hard real-time require-
ments and Linux (or Linux/RT) is envisioned as the primary operational platform.

2.2.2 Runtime Hierarchy
As an extension to the operating system, and following the hierarchical structure of the rest of the system, we

introduce a hierarchical computation and communication infrastructure responsible for (1) runtime resource moni-
toring, (2) dynamic load-balancing of the entire system, and (3) distributed hierarchical error detection, identifica-
tion (diagnosis) of failed components, and recovery (including reconfiguration) from errors that affect the hardware,
the operating system, or applications.

The environment considered in this work is highly dynamic and operates under continued stress in terms of
faults and varying workload (data traffic and computation intensity). The challenge is to provide system solutions
(algorithms and architectures) that can guarantee delivering a required level of service in spite of errors and the un-
predictable dynamics of the system. Detection and recovery will take time and an appropriate level of response
must be provided, corresponding to the reliability and temporal requirements of each application at each level.

Moreover, the infrastructure will monitor the performance of computation processes throughout the system (mi-
grating them when necessary), provide (at least) soft-real time guarantees, and handle its own errors (i.e., the infra-
structure must be self-checking). Finally, the proposed infrastructure should dynamically adapt to the changing op-
erational conditions (e.g., fault/error rate and variability in workload) and should enable seamless transition between
full operational capabilities and operation in a degraded mode. It is essential to keep the application alive until the
full computation capacity of the system is restored. Due to the hardware and operations cost of BTeV, graceful deg-
radation is a very cost-effective solution for high availability. This infrastructure will interact with the global opera-
tions manager and the global fault manager as depicted in Figure 2.

2.2.2.1 Very Lightweight Agents (VLAs)
At the lowest level of the runtime hierarchy, we will apply the concept of very lightweight agents (VLAs). Ap-

plied to DSPs, these are simple software entities, which can be implemented in a few dozen lines of assembly lan-
guage, that take advantage of the exception-signaling and interrupt-handling mechanisms present in most DSP ker-
nels to expose errors in the kernel behavior. When the VLA detects (e.g., by monitoring DSP exception signals) an
error condition, it reports to an ARMOR (described next), which takes appropriate actions such as disabling the exe-

 - 1

cution thread or discarding the current data item. A similar mechanism will be explored for the monitoring and re-
porting of deadlines, traffic, processor loads, etc. Moreover, the interrupt mechanism will also be used to trigger re-
configuration of the software or hardware at this lowest level of the hierarchy. Note that since the software VLAs
are small and interrupt-driven, the latency introduced by VLAs will be negligible.

Hardware VLAs can also be developed for FPGAs, consuming only small number of gates, and taking advan-
tage of otherwise present communication resources. VLAs (software and hardware) in this context is new research
area.

2.2.2.2 Adaptive, Reconfigurable, and Mobile Objects for Reliability (ARMORs)
The fault tolerance and performance-oriented services offered to the system will be encapsulated in intelligent

active entities (agents) called ARMORs (Adaptive, Reconfigurable, and Mobile Objects for Reliability). ARMORs
are, by design, highly flexible processes, which can be customized to meet the runtime needs of the system37. Vari-
ants of ARMORs will run on DSPs, L2/L3 processors, and other supporting processors throughout the system.

ARMORs communicate through message passing and all functions of an ARMOR process and its runtime be-
havior are encapsulated in elements (see Figure 3(a)). Elements constitute basic building blocks, which usually en-
capsulate elementary detection and recovery services available to the application. New functionality can be intro-
duced into the system without disturbing existing functionality, as long as, from a resource or timing perspective, it
does not affect the current system. In other words, the resource manager must implement some type of resource pro-
tection. Services provided by the elements are in-
voked by the ARMOR interface, which serves as a
communication gateway with the outside world. The
ARMOR interface has two primary responsibilities:
(1) controlling the addition, removal, and replace-
ment of constituent elements within the ARMOR,
and (2) providing communication among ARMORs.

An application can take advantage of
ARMOR provided services (such as error detec-
tion and recovery) through the concept of an em-
bedded ARMOR in which the core element structure
Figure 3). The application code is lightly instrumente
vided by the underlying elements. In this configura
ARMOR to other ARMORs in the system and as a n
mits BTeV physics applications to use the same ap
within the computing platform itself.

2.2.2.3 Hierarchical Detection and Recove
Designing a hierarchy of detection and recover

separate layers and minimizing the overhead due to t
recovery layers must be evaluated with respect to the
erage. This would guide the decision as to which of
cific classes of applications.

There is a strict synergy between this hierarchy
BTeV, with the hierarchical software structure that w
tions managers in Figure 2). This synergy enables t
an integral part, not as a cumbersome afterthought.

An ARMOR with embedded techniques for d
against system failures. The detection techniques are
tion starts at the lowest layer, and violations not capt
tection layer includes techniques internal to the ARM
the ARMOR substantially self-checking. The next l
node fail-silent to the outside world (e.g., exception
among multiple ARMORs and ensures that all proce
recovery scenario, after detecting an error, an ARM
warded to the error handler. The error handler interp
action(s) according to predefined rules and strategies.

ARMOR Interface

element element element
ARMOR

ARMOR interface

El

Application
process

Application
process A

R
M

O
R

S
tu

b

ElEl El El El

(a)
(b)

ARMOR Interface

element element element
ARMOR

ARMOR Interface

element element element
ARMOR

ARMOR interface

El

Application
process

Application
process A

R
M

O
R

S
tu

b

ElEl El El El

ARMOR interface

El

Application
process

Application
process A

R
M

O
R

S
tu

b

ElEl El El El

(a)
(b)

Figure 3: (a) ARMOR architecture,(b) Embedded ARMOR
0 -

 of the ARMOR is linked to the user application process (see
d with the embedded ARMOR API to invoke the services pro-
tion, the embedded ARMOR process appears as a full-fledged
ative application process to non-ARMOR processes. This per-
paratus for error handling as will be used to handle errors

ry
y requires a balance between placing disparate techniques in
he interactions between multiple layers. Also, the detection and
ir latency, the performance degradation incurred, and their cov-
the detection and recovery mechanisms are best suited for spe-

 of error detection and recovery in the hardware structure of
e are developing (best seen in the fault managers and the opera-
he fault-tolerant subsystem to be incorporated in the system as

etecting and recovering from errors serves as a defense line
arranged in a hierarchy of logical layers38. The chain of detec-
ured at a lower layer bubble up to higher layers. The lowest de-
OR (e.g., signature checking and livelock detection) and makes
ayer provides error containment within a node and makes the
 handling, smart heartbeats). The next layer detects failures

sses have a consistent view of the outside world. In an example
OR would create a corresponding error context, which is for-
rets the information in the error context and initiates recovery

In designing hierarchical error detection and recovery it is essential to ensure adaptability of individual layers.
The detection and recovery invocation conditions at the individual layers should be customizable to application
needs, the types of faults being experienced in the system, and the reliability characteristics desired for the system.
When designing recovery strategies, it is important that one and only one ARMOR be responsible for the ultimate
recovery of a failed entity in order to avoid contention during error recovery. Independent of which layer of the hi-
erarchy handles an error, the information about the occurrence of the error is propagated upwards through the hier-
archy so the global fault manager has a consistent view of the system behavior.

Figure 4 illustrates error detec-
tion mechanisms encapsulated in
three logical layers. Because each
layer can incorporate a suite of de-
tection techniques, a layer is charac-
terized by the specific techniques
and also by the location in which the
techniques execute. In this research
we will define a hybrid (location and
application-defined) set of tech-
niques that can be used within the
resource and timing constraints.

As in the case of error detec-
tion, it is possible to consider logical
layers for recovery as well (see Fig-
ure 4). We define three logical lay-
ers of recovery: (1) within a process, (2
tion resides, and (3) a global recovery i
covery it is critical to ensure that one an

Note that the time consumed by res
tions managers. Information regarding d
the hierarchy, so that more accurate diag
time-consuming tasks can be either acco
the distribution of new reconfiguration o
has to be taken into account. Lastly, the
when developing new strategies for deal

2.2.3 System Validation
Evaluation of the proposed infrastr

accurate evaluation of attributes, includ
well-established methodology. To addr
cists, the complex nature and variety of
tions between system fault tolerance a
system. This knowledge is essential to
dedicated to cope with system anomalie

In order to fully stress the system
realistic representations of operational
(3) stress models and injection strategi
expansions. To conduct evaluation stud
ing failure scenarios representative of re
veloping NFTAPE39, an environment f
plexity and scale of the system discusse
by adding support for new fault/error m

2.2.4 Collection of Data for Cre
A less-glorified fault tolerance rela

will develop new, low-overhead techniq

Increasing overhead

Detection
�Built-in assertion checks
�Monitor thread e.g., watchdog timer
�Control and data flow check

Recovery
�Restart a thread

ARMOR Error
Detection &
Recovery

Process
Inside ARMOR

process

Layer 2:

Layer 3:

Detection
�Trap illegal signals
�Smart heartbeats

Recovery
�Checkpointing/Rollback
�Process restart on the same node

Layer 1:

Detection
�Signature exchange between
processes for consistency check
�Global heartbeats

Recovery
�Checkpointing/Rollback
�Process migration/restart

� Techniques encapsulated in
separate elements

� Can be selectively turned on
or off, inserted or removed

� Arranged in a hierarchy
of layers

Node
At the node

Network
Between
ARMORs

Increasing overhead

Detection
�Built-in assertion checks
�Monitor thread e.g., watchdog timer
�Control and data flow check

Recovery
�Restart a thread

ARMOR Error
Detection &
Recovery

ARMOR Error
Detection &
Recovery

Process
Inside ARMOR

process

Layer 2:

Layer 3:

Detection
�Trap illegal signals
�Smart heartbeats

Recovery
�Checkpointing/Rollback
�Process restart on the same node

Layer 1:

Detection
�Signature exchange between
processes for consistency check
�Global heartbeats

Recovery
�Checkpointing/Rollback
�Process migration/restart

� Techniques encapsulated in
separate elements

� Can be selectively turned on
or off, inserted or removed

� Arranged in a hierarchy
of layers

Node
At the node

Node
At the node

Network
Between
ARMORs

�Masking�Masking

Figure 4: ARMOR Error Detection and Recovery Hierarchy
- 11 -

) within a node by the monitoring process on the node on which the applica-
nitiated by a global fault manager. In the context of these three layers of re-
d only one recovery path is active at any time for a detected error.
ources in carrying out error recovery has to be accounted for by the opera-
etection and local recovery must percolate up toward the higher layers of
nostics and recovery can be attempted. These �more intelligent� and more
unted for at design time, or execute during slack in the system. Either way,
r recovery procedure information will use shared resources and therefore
 high-layer detection and recovery may take the resource usage into account
ing with the faults and with reconfiguration for graceful degradation.

ucture must be considered as an integral part of this work. An efficient and
ing reliability, availability, and performance, requires a comprehensive and
ess this challenge we need to understand, in collaboration with BTeV physi-
 unexpected conditions that can affect the system, and to explore the interac-
nd performance and their combined impact on the service delivered by the
 produce realistic system stress that will activate and exercise mechanisms
s and will provide insight into the system bottlenecks.
we will provide: (1) an approach to generating stresses (e.g., faults) that are
environments, (2) a common mechanism to inject the generated stress, and
es that are scalable to new hardware and software technologies, and system
ies, we will use software-based techniques for fault/error injection for creat-
al operational conditions. To this end we will leverage our experience in de-
or conducting automated fault injection experiments. Considering the com-
d in this proposal we need to significantly enhance fault injection capabilities
odels.

ating and Validating New Fault Models
ted issue is the collection of fault/error data for a posteriori analysis. We
ues to do data logging and aggregation of failure data, with the help of the

 - 12 -

VLAs and the ARMORs. This will provide important feedback to designers of both software and hardware, and
guide future iterations of BTeV. By collecting such data we will be able to derive the failure rates for each type of
element used in BTeV, and to correlate the faults/errors among different components. We intend to use this data to
produce realistic fault models for use by the fault tolerance community at large. Furthermore, we will investigate
the creation of fault tolerance benchmarks that could be distributed via the World Wide Web. The new fault models
will also enhance capabilities of tools such as the NFTAPE39 fault injection environment developed by the UIUC
partners, and the FT-RT-Mach40 operating system developed by the University of Pittsburgh partners.

2.3 Other Aspects of the Project
The system described here is only the core of the fault-tolerant, fault-adaptive framework that supports the

BTeV trigger system. There will be many supporting hardware subsystems that will control DSPs and manage
hardware settings throughout the computing and detector systems. The configuration management and fault toler-
ance of the trigger farms and supervisory system must interface to the experiment specific code on several fronts:

Run management41: Some successive runs, such as normal data taking, may have identical configurations that
simply require triggers to be re-enabled, while others, such as special calibration runs, may require large reconfigu-
ration of control constants and a different suite of application programs.

Persistent storage (resource management, run history): The run configuration history (which hardware par-
ticipated, versions of trigger algorithms used, etc.) must be stored into the run history database. The current hard-
ware configuration must be accessible to experiment specific software.

User interface/diagnostics: Runs are started, stopped, and monitored by human operators. The experiment
needs access to the configuration, status, and error information to interface to the control room GUIs. Diagnostics
and status information at each level of the system must be provided to trace and diagnose the problems.

Application code: The application code will have status and error information, which should use the same un-
derlying infrastructure that is built into the fault-tolerant system. The ARMOR application interface provides this
capability. These issues all have to be addressed in the wider context of BTeV�s online and runtime system but are
too detailed to discuss here.

3. Relation to Existing Research
The main thrust of the research proposed here is to develop runtime software and design methodologies (as well

as the document our experiences with BTeV) for large scale and complex real-time, embedded, fault-tolerant sys-
tems. The target of previous research for embedded systems are far from the magnitude of BTeV and do not present
the software challenges or operational real-time reliability issues of this degree. Several efforts15,33 have laid the
foundation for the development of this framework, but have not addressed the mapping techniques for such hetero-
geneous and large-scale systems (100s of FPGAs, 1000s of DSPs, 1000s of L2/L3 computers, different types of
network hardware, global managers, etc), the hierarchy of fault management, or the information percolation tech-
niques suggested here.

Other works have addressed load balancing for performance purposes42 but mostly for distributed systems with
loosely coupled elements and much higher latency requirements than the 132 ns timeframe we are faced with in
BTeV. The mapping of tasks to processors has been treated in several works previously, based on constraint lan-
guages23,43,44,45, constraint satisfaction31, and distributed constraint satisfaction approaches that are market based46,47,
evolutionary algorithm-based48,49 and decision tree-based29. Some works have attempted multi-agent scheduling30,
but the agents that satisfy the required aggregated behavior are not scalable.

From the software perspective, we will expand on the state-of-the-art in software synthesis50 and apply the new
findings to large-scale systems, which will encompass the code generation for the items discussed above (partition-
ing, mapping, fault tolerance, etc). These synthesis tools have been applied to physical systems32, but not to soft-
ware failures and failure propagation so far.

From the runtime perspective, many DSP-friendly kernels come with scalable extensions that support real-time
scheduling and synchronization, host-to-target communication, or real-time instrumentation. At the higher levels
(L2/3), real-time kernels are common in the industry (QNX51, VxWorks52, Linux/RT) but fault-tolerance has only
been addressed in this context for transient conditions. We will choose the kernels and runtime environments that
best fit the different types of subsystems being addressed, and create the necessary software tools to compose them
into a unique framework.

Many of the existing solutions for providing fault tolerance in a network of unreliable components are based on
exploiting groups of replicated processes, e.g., ISIS53, Horus54, and Totem55 where the fault tolerance is something
of a side effect of the replication approach. Examples of systems which explicitly address the issue of fault tolerance

 - 13 -

include Delta-456, Piranha57, and AQUA58. Most existing systems require a complex software layer and/or additional
hardware to provide group communication and good coverage for fail-silent behavior of processes and nodes. Sev-
eral of them detect failures solely through the use of timeouts.

 The hierarchical scheme proposed here creates a foundation for providing efficient mechanisms to monitor per-
formance, to detect and recover errors, and to install configurations for new experiments and for fault mitigation.
The introduction of VLAs and ARMORs and their system-wide use offers configurable degrees of fault tolerance
for both applications and the infrastructure itself, and is a significant step in merging the research in the areas of dis-
tributed systems and distributed agents. The hierarchy of VLAs and ARMORs not only enhances error detection and
recovery of the overall system when compared to schemes used by existing solutions (mentioned above) but also en-
ables collection of the error/failure data. This allows the construction of new fault models, which are currently non-
existent. We will leverage our positive experience in employing the ARMOR technology in the JPL REE pro-
ject37,59,60. The scheme proposed here is of much larger scale. The challenge will be to find and assess meth-
ods/techniques that can handle errors under stringent temporal and spatial constraints.

4. Applicability to Others Areas of Computing

The BTeV trigger system is a large scale, real-time, embedded computer system. In order to achieve the high
throughput, the large rejection of unwanted events, and the high efficiency for a small subset of rare and crucially
important events, many of the usual High Energy Physics (HEP) specific features normally associated with such sys-
tems had to be eliminated from the design. For example, all sensor data is stored in a large (>1 Tbyte) buffer mem-
ory. Once in the memory, the data are seen by the system as an abstract data source whose detailed nature is signifi-
cant only to the processing algorithms. To achieve high throughput, there is no fixed latency anywhere in the sys-
tem and there is no requirement for events to emerge from the system in the same time sequence as they occur.
These features give the system a generality that extends well beyond HEP. Previous information technology work
has explored fault tolerance but the scale of this system poses new problems and requires the evaluation of new
technologies and new design approaches. These issues are applicable to a wide range of scientific and engineering
computing applications. Here we briefly discuss three classes of applications that will be able to take advantage of
the work done in this project.

The first is a class of smaller scale but nevertheless ambitious projects in astrophysics. A typical example is the
Pierre Auger project61.

The second class is in the area of medicine: PET (positron emission tomography) scanning is a technique of in-
troducing radio-nuclides into the body and following their progress by detecting the photons they emit. The radiation
doses involved in this process are significant. PET field-of-view and data acquisition systems are very inefficient by
HEP standards and could be improved. The data rates and real-time control problems would benefit from the appli-
cations of the methods developed in this project. The goal is to improve the efficiency of the system and extend the
devices to larger field of view (more data) so that this procedure can become a basic diagnostic tool rather than a
tool employed only to investigate specific problems uncovered by other methods.

 Systems to image neural activity are now being undertaken on an unprecedented scale. The hardware to do the
imaging is well advanced but the data acquisition systems needed to keep up with the ever increasing data-flow are
simply not available. Moreover, the need to employ rare and short-lived tissue places strong demand on the systems
for rapid feedback for real-time control of the experiments as well as fault-tolerance. Researchers in this field should
be able to adapt the software and experience of this project to their needs62.

Other applications that could benefit from high computational performance and fault tolerance are: monitoring
turbine engines and rocket motors, global weather monitoring and disaster early warning systems, satellite based
surveillance, autonomous vehicle navigation, computer vision, highly available Internet based services, and air traf-
fic control systems. To explore the relevance of this work to other application domains, we will hold a series of 4
workshops of 2-3 days duration. For the first workshop, about 6 months into the project, we will invite a dozen ex-
perts from selected applications areas that might be able to use this work. This should result in interest in the project
from one or more participants. We will follow this up in the second and third years with workshops to update and
receive feedback from users. At the project�s end, we will hold a workshop to explain and summarize what we did to
a broad set of prospective users. Funding (travel, lodging) of invited participants is in the budget. Collaborating in-
stitutions will host the workshops and provide the remainder of the support.

5. Educational Component

As part of this proposal, an active involvement of high school teachers will be implemented, modeled on the ex-
isting summer teacher research programs at Fermilab and the participating universities. Starting with the theme

 - 14 -

�Why don�t things always work as well as we�d like�, the teachers will design web-based displays that will allow
students to learn such basic concepts as exception handling and fault tolerance and how they can improve the quality
of products and services. The simplest exercises might, for example, involve designing a �scheduler� for one of a set
of common activities, such as athletic activities, drama performances, etc. Students will be encouraged to discuss
what can go wrong and methods for dealing with them. Common fault mitigation techniques such as having an
understudy in a theatrical production will be identified. Students with computer programming skills will be
provided guidance to write scheduling programs that can be confronted with various real world problems to see if
they are prepared to handle them. We will teach the students error detection and recovery techniques and discuss
how difficult it is to predict and address all the situations that can arise. The most advanced students can use actual
BTeV simulations to �debug� system faults, just as experimenters will do online. The goal is to teach students at all
levels of technical sophistication that making a system that works involves thinking carefully about how it can fail
and how the failures can either be avoided or dealt with. The materials will be pilot projects, based on educational
standards, which allow apprentice experience with real data and have the widest possible distribution. A special fea-
ture of this proposal is to make internet technology relevant experiences and learning available to the
predominantly physical sciences-based QuarkNet63 program, which already involves 275 teachers nationally
(adding another 144 next year) in developing web-based instructional materials. We will also exploit connections of
our university groups to programs in their area64.

At the university level, training of undergraduates and graduate students will play an important role in supply-
ing industry with people well prepared to advance the technology in designing and implementing highly available,
high-performance computing systems. We will leverage experience from this work to create model courses and en-
hance existing classes on design of high availability network systems. This will create an opportunity to disseminate
knowledge about and raise public awareness and understanding of reliability issues. We will seek an involvement
from undergraduate students interested not only in computer science but also in applying information technology in
experimental work. In particular we envision undergraduate projects, which would focus on: (1) investigating tech-
niques for error detection, isolation, and recovery in high performance, network systems, (2) analysis of tradeoffs
between the level of availability/reliability and performance overhead due to error handling mechanisms, (3) explor-
ing methods for characterizing failure behavior of complex networked systems, (4) studying relations between a sys-
tem configuration and an experiment setup the system is supposed to support. In addition to special programs, exist-
ing courses will be adapted to expose students to these topics65.

6. Project Organization, Milestones, and Deliverables

The project will consist of a team of computer scientists and software engineers, largely university based, along
with application domain specialists (BTeV-associated physicists and software engineers). The Principal Investigator
(Paul Sheldon of Vanderbilt) for this proposal will be responsible for the overall project. He will have a steering
committee consisting of the chief software engineer for the project, a scientific representative of BTeV, the leader of
the BTeV trigger and data acquisition project, and the project education liaison. The chief software engineer will
chair a technical committee. The project will be carried out as a coordinated but semi-independent set of research
topics tractable for small teams at universities. Tasks will be assigned based on recognized milestones and deliver-
ables and resources will be allocated to the participating institutions based on memoranda of understanding. There
will be regular (at least quarterly) collaboration meetings and regular status reports. The PI will set up an external
review committee to ensure the work is going well and has general application outside BTeV.

We will take advantage of the Fermilab's investment in R&D for the experiment to carry out large-scale testing
on prototype hardware. We also will be able to employ the software on the full system that will eventually be funded
through the experiment. Hardware purchases for the project will be limited to, at most, the provision of relatively
modest test systems located at the participating university groups.

The preliminary and non-exclusive breakdown of responsibilities among collaborating institutions is: Modeling
and Design framework: Vanderbilt with input from Syracuse and Pittsburgh in the partitioning, load balancing and
task allocation parts; Runtime Fault Tolerant System: Illinois, Pittsburgh, and Syracuse, combining the VLAs and
ARMORs to create the system hierarchy; Interface to BTeV and run control and monitoring: Fermilab; Trigger algo-
rithms, physics applications, and input on operating conditions: BTeV physicists and software engineers.

The main deliverables of the project are: (1) the design and modeling software and the runtime system software;
(2) the results of all intermediate investigations and studies of interest to people outside the project, as captured in
reports, articles, and logs; (3) benchmark performance results from the test-bed systems that are of interest outside
the project; (4) Web displays, course materials, reports and captured experience which form the educational compo-
nent; and (5) reports and results from at least two applications outside BTeV of the system along with the records

 - 15 -

and results of the applications workshops. The high level milestones of the project are given in Table 2. The results
of this work will be made available to the public through publications in journals, articles, and lectures. Public Web
pages will present many aspects of the work. Educational materials will be available from the Fermilab Education
Office and the QuarkNet program and through university groups. Software and documentation will be available
from the FermiTools public distribution66 and the university groups.

Table 2: Preliminary Project Milestones

Funding Year Design Environment Milestone Run time System Milestone
FY1Q1/2 Modeling language and env (preliminary)

Specify Interface to Run time env.
Design of overall runtime system hier-
archy (ARMOR + VLAs)

FY1Q3/4 Synthesis of operations and Fault managers
DSP and LINUX Synthesis

Design and implementation of VLA &
ARMOR prototypes

FY2Q1/2 Modeling language and env
Design space (preliminary)

Communication structure between
VLAs and the levels above

FY2Q3/4 Synthesis of performance simulator
Synthesis of all operations mgrs (final)
Hardware synthesis

Detection and recovery in Layer 1 of
ARMOR. Study Dynamic load-
balancing (DL)

FY3Q1/2 Modeling language and env (final)
Design space

Detection and recovery in Layer 2 of
ARMOR; Study DL.

FY3Q3/4 Synthesis to Diagnosability tool
Synthesis to performance simulator (final)

Detection and recovery in Layer 3 of
ARMOR; Study DL.

FY4Q1/2 Design space (final) Full scale Runtime Environment test
FY4Q3/4 Synthesis to Reliability tool

Synthesis to Diagnosability tool (final)
Large scale evaluation on BTeV hard-
ware and revision

FY5Q1/2 Synthesis to Reliability tool (final) Final evaluation on BTeV hardware

7. Conclusion

Many real-time embedded systems applications require high computational performance and high availability.
High Energy Physics is only one of many disciplines that must collect and analyze huge amounts of data in real
time, and must continue operating under fault conditions. The following statement was taken from the President�s
Information Technology Advisory Committee Report (PITAC)67:

�The Nation needs robust systems, but the software our systems depend on is often fragile. Software fragil-
ity is its tendency not to work properly � or at all. Fragility is manifested as unreliability, lack of security,
performance lapses, errors, and difficulty in upgrading. Examples can be found everywhere, from our huge
information systems for air-traffic control to the personal computers on our desks, from the Pentagon to the
Internal Revenue Service (IRS).�

This research proposes to develop new technologies for creating software for real-time embedded computer systems
that must exhibit ultra high performance, must be highly available, and must be maintained and evolved easily over
the system life-cycle. The results of the research will be a powerful software system that will support the BTeV ex-
periment, as well as new engineering methodologies for developing software for large-scale embedded computer
systems. These results could easily be applied to other such applications, including those referred to by PITAC.
This research addresses the unreliability, performance lapses, errors, and difficulty of upgrading mentioned there.

This project will bring together a team of experts to develop new embedded systems technologies, which can be
made available to a much wider range of applications and researchers. The team will prove the technologies by de-
ploying them in support of the very demanding BTeV trigger and data acquisition system. By collaborating with an
ongoing effort in experimental particle physics, the team will have access to a large-scale system for testing without
needing to acquire all the hardware independently. Members of the team, which come from universities in the US
and from Fermilab, are experienced in the development of this kind of software and will, through the support ob-
tained from this project, make a breakthrough in software for embedded real time systems while at the same time
advancing the investigation of a question of major significance in physics.

 - 16 -

1 The BTeV Proposal (May 2000) resides at:
 http://www-btev.fnal.gov/public_documents/btev_proposal/index.html.
 The BTeV Trigger is described in chapter 9 and the Data Acquisition System in chapter 10. These are located in

Part 2 of the document. Trigger algorithm physics simulations are described in chapter 14, located in Part 3.
2 Fermilab Director Michael Witherell�s report on BTeV approval:

http://www-btev.fnal.gov/public_documents/Approval/index.html.
3 Links to the home pages of members of the collaboration may be found at:
 http://www.hep.vanderbilt.edu/btev_rtes/.
4 Robert Tschirhart and Peter Wilson, private communication.
5 A general presentation on the fundamental objectives of High Energy Physics in the 21st century can be found at:

http://www.fnal.gov/pub/inquiring/matter/future/index.html.
6 Schaller, S.C., ed. 1999 IEEE Conference on Real-Time Computer Applications in Nuclear Particle and Plasma

Physics, Santa Fe, June 1999, in IEEE Trans. Nucl. Sci., Vol. 47, Issue 2, Part 1, April 2000.
7 Gottschalk, E. E., et al., �BTeV Detached Vertex Trigger,� to be published in Proceedings of the 9th International

Workshop on Vertex Detectors (Vertex 2000), Homestead, MI, September 2000.
8 A WEB-based animation of the pattern recognition algorithm used in the BTeV trigger can be found at

http://www-btev.fnal.gov/public_documents/animations/Animated_Trigger/index.htm.
9 A run typically corresponds to all or part of a Tevatron colliding beam �store� which may last several hours. The

collision rate decreases during the store as the particles in the beams are gradually used up by the collisions.
10 Fox, A., Gribble, S., Chawathe, Y., Brewer, E., and Gauthier, P., �Cluster-Based Scalable Network Services,�

Symposium on Operating Systems Principles (SOSP-16), October 1997.
11 Bapty, T., Sztipanovits, J., �Model-Based Engineering of Large-Scale Real-Time Systems,� Proceedings of the

Engineering of Computer Based Systems (ECBS) Conference, pp. 467-474, Monterey, CA, March 1997.
12 Gartner, F., �Fundamentals of fault-tolerant distributed computing in asynchronous environments,� ACM Comput-

ing Surveys, Vol. 31(1), 1999, pp. 1-26.
13 Kon, F., and Campbell, R., �Supporting automatic configuration of component based distributed systems,� Pro-

ceedings of the 5th USENIX Conference on Object-Oriented Technologies & Systems, 1999.
14 Bagchi, S., Srinivasan, B., Whisnant, K., Kalbarczyk, Z., Iyer, R.K., �Hierarchical Error Detection in a Software

Implemented Fault Tolerance (SIFT) Environment,� IEEE Transactions on Knowledge and Data Engineering,
vol.12, no.2, 2000, pp.203-224.

15 Sztipanovits, J., et al., �MULTIGRAPH: An Architecture for Model-Integrated Computing,� Proceedings of the
IEEE ICECCS�95, pp. 361-368, November 1995.

16 Franke, H., Sztipanovits J., and Karsai, G., �Model-Integrated Computing�, Proceedings of the 1997 Hawaii Sys-
tems Sciences Conference, (no page number available, CD-ROM publication), 1997.

17 Lee, E.A., and Sangiovanni-Vincentelli, A., �A Framework for comparing Models of Computation,� IEEE Trans-
actions on CAD, Vol. 17, No. 12, December 1998.

18 Najjar, W., Lee E., and Gao G., �Advances in the dataflow computational model,� Journal of Parallel Computing,
pp. 1907-1929, vol. 25, 1999.

19 Misra, A., �Sensor-Based Diagnosis of Dynamical Systems,� Ph.D. Dissertation, Vanderbilt University, Electrical
Engineering, 1994.

20 Carnes, J., and Misra, A., �Model-Integrated Toolset for Fault Detection, Isolation and Recovery (FDIR),� Inter-
national Conference and Workshop on Engineering of Computer Based Systems, Friedrichshafen, Germany,
March 1996.

21 Harel, D., "Statecharts: A Visual Formalism For Complex Systems,� Science of Computer Programming 8, pp.
231-278, 1987.

22 Object Constraint Language Specification, Version 1.1, Object Management Group, September 1997.
23 Neema, S., �System-Level Synthesis of Adaptive Computing Systems,� Ph.D. Dissertation, Vanderbilt University,

Electrical Engineering, 2001.
24 Davis, J., Bapty, T., Karsai, G., Malloy, D., Sztipanovits, J., and Tibbals, T., �Model Based Data Validation,�

Proceedings of the Joint Technology Showcase on Integrated Monitoring, Diagnostics, and Failure Prevention,
Mobile, AL, April 1996.

25 Bapty, T., Neema, S., Scott, J., Sztipanovits, J., and Asaad, S., �Model-Integrated Tools for the Design of Dy-
namically Reconfigurable Systems,� VLSI Design, 10, 3, pp. 281-306, 2000.

 - 17 -

26 Davis, J., �Integrated Safety, Reliability, and Diagnostics of High Assurance, High Consequence Systems,� Ph.D.

Dissertation, Vanderbilt University, Electrical Engineering, 2000.
27 Wilkes M., Lynd L., Sztipanovits J., Karsai G., �The Multigraph Approach to Parallel, Distributed, Structurally

Adaptive Signal Processing�, IEEE International Conference on Acousitc and Signal Processing, pp 2037-2040,
1990.

28 Bryant, R., �Graph-Based Algorithms for Boolean Function Manipulation,� IEEE Transactions on Computers, pp.
677-691, vol. C-35, no. 8, August 1986.

29 Bryant, R., �Symbolic Manipulation with Ordered Binary Decision Diagrams,� School of Computer Science, Car-
negie Mellon University, Technical Report CMU-CS-92-160, July 1992.

30 Sycara, K., and Liu, J.S., �Multiagent Coordination in Tightly Coupled Task Scheduling,� Proceedings of the
First International Conference on Multiagent Systems, pp. 181-188, 1996.

31 Rosenschein, J. S., and Zlotkin, G., �Designing Conventions for Automated Negotiation,� AI Magazine, pp. 29�
46, 1994.

32 Bapty, T., Neema, S., Scott, J., Sztipanovits, J., and Asaad, S. �Model-Integrated Tools for the Design of Dynami-
cally Reconfigurable Systems,� ISIS Technical Report/Vanderbilt University, 2000. An online copy is available
at: http://www.isis.vanderbilt.edu/publications/archive/Bapty_T_0_0_2000_Model_Inte.PDF.

33 http://www.isis.vanderbilt.edu/projects/acs/index.html.
34 Details may be found at http://www.tidsp.com/.
35 See http://www.ose.com.
36 see, for example: Bapty T., Abbott B. �Portable Kernel for High-Level Synthesis of Complex DSP-Systems,�

Proceedings of the the International Conference on Signal Processing Applications and Technology, Boston, MA,
May 1995, and Montague, B.R., �JN: An Operating System for an Embedded Java Network Computer,� Com-
puter Science Technical Report UCSC-CRL-96-29, UCSC, December 1996.

37 Kalbarczyk, Z., Iyer, R.K., Bagchi, S., and Whisnant, K., �Chameleon: A Software Infrastructure for Adaptive
Fault Tolerance,� IEEE Trans. on Parallel and Distributed Systems, Vol. 10, No. 6, pp. 560-579, June 1999.

38 Bagchi, S., Srinivasan, B., Whisnant, K., Kalbarczyk, Z., and, Iyer, R.K., �Hierarchical Error Detection in a Soft-
ware Implemented Fault Tolerance (SIFT) Environment,� IEEE Transactions on Knowledge and Data Engineer-
ing, vol.12, no.2, 2000, pp. 203-224.

39 Stott, D., Floering, B., Burke, D., Kalbarczyk, Z., and Iyer, R.K., �NFTAPE: A Framework for Assessing De-
pendability in Distributed Systems with Lightweight Fault Injectors,� in Proc. of 4th Int. Computer Performance
and Dependability Symposium IPDS'00, March 2000, pp. 91-100.

40 Egan, A., Kutz, D., Mikulin, D., Melhem, R., and Mosse, D., �Fault-Tolerant RT-Mach (FT-RT-Mach) and an
Application to Real-Time Train Control�, Software Practice and Experience (April 1999), Vol. 29 No. 4, pp. 379-
395, Wiley Publishers.

41 A run is the overall concept of preparing to and acquiring data for a certain period of time. Run control is the
overseeing software that manages a run, which which can range from a few minutes to several hours.

42 Colajanni, M., Yu. P.S., and Dias, D.M., �Analysis of Task Assignment Policies in Scalable Distributed {Web}-
Server Systems�, IEEE Transactions on Parallel and Distributed Systems, Vol. 9, No. 6, 1998.

43 Kuchcinski K., �Embedded System Synthesis by Timing Constraints Solving,� Proceedings of the 10th Interna-
tional Symposium on System Synthesis, 1997.

44 Teich J., et al, �An evolutionary approach to system-level synthesis,� Proceedings of the 5th International Work-
shop on Hardware/Software Co-Design (Codes/CASHE), 1997.

45 Kalavade A., Lee, E., �The Extended Partitioning Problem: Hardware/Software Mapping and Implementation-Bin
Selection,� Proceedings of the 6th International Workshop on Rapid Systems Prototyping, North Carolina, June
1995.

46 Yokoo, M., Durfee, E.H., Ishida, T., and Kuwabara, K., �Distributed constraint satisfaction for formalizing dis-
tributed problem solving,� IEEE 12th International Conference on Distributed Computing Systems, pp. 614-621,
1992

47 Parunak, Ward, and Sauter, �The MarCon Algorithm: A Systematic Market Approach to Distributed Constraint
Problems,� AI-EDAM 13 (1999), pp. 217-234. A summary appears in the Proceedings of ICMAS'98.

48 Eiben, A. E., van Hemert, J.I., Marchiori, E., and Steenbeek, A.G., �Solving binary constraint satisfaction prob-
lems using evolutionary algorithms with an adaptive fitness function,� Proceedings of the 5th Conference on Par-
allel Problem Solving from Nature, pp. 196-205, Berlin, 1998.

49 Craenen, B.G.W., Eiben, A.E., et al., �Solving Constraint Satisfaction Problems with Heuristic-based
Evolutionary Algorithms,� Proc. of the 2000 Congress on Evolutionary Computation.

 - 18 -

50 Bhattacharya S, Murthy P., Lee E, �Software Sythesis from Datflow Graphs,� Kluwer Academic Press, Norwell

MA, 1996.
51 See http://get.qnx.com.
52 See http://www.wrs.com/.
53 Birman K.P., and van Renesse, R., �Reliable Distributed Computing with the ISIS Toolkit,� IEEE Computer So-

ciety Press, Los Alamitos, CA 1994.
54 van Renesse, R., Birman, K.P., and Maffeis, S., �Horus: A Flexible Group Communication System,� Communica-

tions of the ACM, Vol. 39, No. 4, 1996, pp. 76-83.
55 Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A., Budhia, R.K., and Lingley-Papadopoulos, C.A., �Totem: A

Fault-Tolerant Multicast Group Communication System,� Comm. of the ACM, vol. 39, No. 4, 1996, pp. 54-63.
56 Powell, D., �Lessons Learned from Delta-4,� IEEE Micro, vol. 14, No. 4, 1994, pp. 36-47.
57 Maffeis, S., �Piranha: A CORBA Tool for High Availability,� IEEE Computer, vol.30, No.4, 1997, pp. 59-66.
58 Cukier, M., et al., "AQUA: An Adaptive Architecture that Provides Dependable Distributed Objects," to appear in

Proc. SRDS-17, 1998, pp.245-253.
59 Chen, F., Craymer, L., Deifik, J., et al., �Demonstration of the Remote Exploration and Experimentaion (REE)

Fault-Tolerant Parallel-Processing Supercomputer for Spacecraft Onboard Scientific Data Processing,� Proc. of
International Conference on Dependable Systems and Netwroks, DSN �00, June 2000, pp. 367-372.

60 Ferraro, R., �NASA Remote Exploration and Experimentaion Project,� http://www-ree.jpl.nasa.gov.
61 Hojvat, C., private communication. Letter of support associated with this proposal. For details on the Pierre Auger

Project, see http://www.auger.org/.
62 A. Litke, private communication. Letter of support associated with this proposal.
 See http://www.snl-e.salk.edu/Technology/.
63 QuarkNet; see http://quarknet.fnal.gov/.
64 University of Pittsburgh�s Link-to-Learn (http://www.cs.pitt.edu/L2L) and College in High School

(http://www.pit.edu/~chsp) programs.
65 An example of university course initiatives is: PITT CS 3420 Fault Tolerant Parallel and Distributed Systems

(http://www.cs.pitt.edu/GrEdu/course-descriptions/3420.html).
66 Fermitools; see http://www.fnal.gov/fermitools/.
67 PITAC - Report to the President, President's Information Technology Advisory Committee, 2/24/1999.

	Introduction and Outline
	1. The BTeV Trigger System
	1.1 The BTeV Trigger System Hardware and Filtering Algorithms
	1.2 IT Aspects of the BTeV Trigger and Data Acquisition System
	1.2.1 Dynamic Reconfiguration and Partitioning
	1.2.2 High Availability
	1.2.3 Life-cycle Maintainability and Evolvability

	2. Project Description, Goals, and Objectives
	2.1 Design and Analysis Environment
	2.1.1 Modeling
	
	Target Hardware/Resource Modeling
	System Detection and Fault Mitigation Modeling
	System Constraint Modeling

	2.1.2 Analysis
	2.1.3 Synthesis
	
	
	
	
	
	Design Alternative Resolution, Partitioning, and Processor Allocation

	System Configuration Generation

	2.2 Runtime Environment
	2.2.1 Operating System(s)
	2.2.2 Runtime Hierarchy
	
	
	
	An ARMOR with embedded techniques for detecting and recovering from errors serves as a defense line against system failures. The detection techniques are arranged in a hierarchy of logical layers�. The chain of detection starts at the lowest layer, and
	In designing hierarchical error detection and recovery it is essential to ensure adaptability of individual layers. The detection and recovery invocation conditions at the individual layers should be customizable to application needs, the types of faults

	2.2.3 System Validation
	2.2.4 Collection of Data for Creating and Validating New Fault Models
	2.3 Other Aspects of the Project

	3. Relation to Existing Research
	4. Applicability to Others Areas of Computing
	5. Educational Component
	6. Project Organization, Milestones, and Deliverables
	7. Conclusion

